Johnson Matthey Inspiring science, enhancing life

DRAFT for ECMA 2024

Challenges and opportunities for Off-road applications to meet Bharat Stage-V regulations

Kamlesh T, Sharan S, Ashley S, Preethi V, Amit S, Sudhagar V, October 2024, Clean Air India

Sethuraman, S., Sitamraju, S., Lopez-De Jesus, Y., and Markatou, P., "Experimental and Computational Study of DOC on CSF for Heavy Duty Diesel Applications," SAE Technical Paper 2019-01-0586, 2019, https://doi.org/10.4271/2019-01-0586.

Introduction

- Off-road segment is key as rural India is largely an agriculture-based economy and current infrastructure push across India.
- BS TREM V (eff. Apr'26) and CEV V (eff. Jan'25)
 - PM:0.015g/kwh, PN: 1x10¹² #/kWh → 19-56kW : CSF
 - NOx (0.4g/kWh) → >56kW : SCR
 - Cost and vehicle hood design aesthetics are key factors.
- Use of innovative technology to reduce the ATS volume help to serve both.
- Similarly, advanced Catalyst technology for Genset application CPCB IV+ can help reduce catalyst volume.

Ref: https://statisticstimes.com/economy/country/india-gdpsectorwise.php#:~:text=Sector%2Dwise%20GDP%20of%20Indi a&text=The%20services%20sector%20accounts%20for,and%20 allied%20sector%20share%2017.59%25.

JM

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

CONFIDENTIAL

2

Key requirements to meet Legislation in dominant market segment

19kW to 56kW → DOC+CSF (Key Focus) Above 56kW → DOC + CSF+ SCR+ASC

Farm Segment

TRACTORS Bharat TREM-V/April'2026

со	g/kwh	5.0
HC+NO _X	g/kwh	4.7
РМ	g/kwh	0.015
PN	#/kwh	1X 10 ¹²
Emission cycle: NRTC & NRSC		Filter mandatory

Construction Equipment Vehicles

Bharat Stage-V/Jan'2025

со	g/kwh	5.0	
HC+NO _X	g/kwh	4.7	
РМ	g/kwh	0.015	
PN	#/kwh	1X 10 ¹²	
Emission cycle: NRTC & NRSC			

19kW to 56kW \rightarrow DOC Above 56kW \rightarrow DOC + SCR

Stationary Engines

Diesel Generator CPCB-IV+/July'23

со	g/kwh	3.5
HC+NO _x	g/kwh	4.7
РМ	g/kwh	0.03
PN	#/kwh	N.A
Emission cycle: 5 – mode cycle		

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

Tractor and CEV Application <56kW → DOC+CSF >56kW → DOC+CSF+SCR+ASC

JM

DOConDPF Technology

- DOC on DPF provides the flexibility of reducing the total aftertreatment system volume
- DOC on DPF also helps move the SCR to a warmer location, thereby enabling earlier injection of urea in the cycle

Current System/ Reference

System with reduced packaging space

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

NO Oxidation Performance and SLBP

DOC on DPF performance can be tuned to match the DOC+DPF or DOC+CSF performance

JM

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

CSF Functionality – Passive Soot Oxidation Engine Testing after 5 g/L soot loading

Inlet NOx = 1000 - 1800 ppm, Filter SV = 100k h⁻¹

JN

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

Active regeneration efficiency of DOConDPF is better than DOC+DPF

DOC Functionality - SS HC Oxidation

- DOC on CSF has considerably less HC slip compared to DOC + DPF system
- DOC+CSF has additional PGM and catalyst volume

CSF Functionality – Active Regen after 3g/L soot

 DOC on CSF has lower active regeneration efficiency compared to DOC + DPF

Target DOC/DOConCSF Out Temp = 600C

Target DOC/DOC on CSF Out Temp = 600°C,

Filter SV = 110k h^{-1}

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

CONFIDENTIAL

8

Cold cycle NOx emission lower as SCR comes closer to engine. Benefit in NOx reduction is reduced when the operating temp is higher

Engine out NOx = 1.4g/bhp-h, Avg. SCR SV = 60k h^{-1} , ANR =1.1

JM

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

Genset Applications <56kW → DOC >56kW → DOC + SCR ASC

JM

DOC shows good PM oxidation activity VSCR also supports PM oxidation activity to some extent

PM conversion activity depends on % content of organic shell and soot core DOC, VSCR is expected to oxidize organic shell

JM

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

Advanced VSCR technology help to reduce catalyst volume

SV 120000h⁻¹ 300ppm NO, ANR: 1.0 9.3% O₂, 7% H₂O, Balance N₂ 400cpsi

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

Summary

- Tractor applications bring challenge for volume reduction
- DOConCSF technology could be the potential technology to optimised solution for off-road
- NO oxidation and soot loaded backpressure with DOConCSF technology is slightly poor.
- Active regeneration HC slip is lower with DOConCSF however, relative soot mass burn is lower than DOC+DPF
- DOConCSF improves tailpipe NOx emissions by allowing early urea injection.
- For Genset applications, PM oxidation on DOC and VSCR help to meet PM emission limit; advanced VSCR technologies can help to reduce system volume.

JM