

New Revolutionary Solutions for Euro 7 Emission Measurement

Yoshinori Otsuki HORIBA, Ltd.

October 22, 2024

Agenda

1	Technical challenges in future regulatory requirements
2	Key technology – "IRLAM"
3	Overview of "VERIDRIVE"
4	Performance
5	Conclusions

Regulatory roadmap worldwide (as of July 2024)

Euro 7 emission limits : provisional agreement on the trilogue

M1, N1 vehicles

		<u>Mass in running</u> order (MRO) (kg)	Ma cau <u>mono</u> (C	<u>iss of</u> r <u>bon</u> <u>oxide</u> <u>(O)</u>	Mass o hvdroc (TH	of total carbons IC)	<u>Ma</u> <u>nonm</u> <u>hydroca</u> <u>(NM</u>	<u>ss of</u> ethane arbons <u>HC)</u>	M oxi nit	ass of ides of rogen (Ox)	Combi of total hydrog and ox nitrogg	ned mass l carbons ides of cn C + NOx)	Mi part mi	<u>iculate</u> atter ' <u>M)</u>	Num par	ber or ticles N:0)
	č.		L _L (n	ng/km)	<u>L2 (m</u>	<u>g/km)</u>	<u>L3 (m</u>	g/km)	Lat	mg/km)	<u>L2+1</u>	4 (mg/km)	<u>Ls (n</u>	ig/km)	<u>L∉(/</u>	<u>#/km)</u>
Category	Class	-	<u>P1</u>	<u>cı</u>	<u>P1</u>	<u>CI</u>	<u>P1</u>	<u>cı</u>	<u>P1</u>	<u>CI</u>	<u>P1</u>	<u>CI</u>	<u>P1</u>	<u>CI</u>	<u>P1</u>	a
Mı	=		<u>1000</u>	<u>500</u>	<u>100</u>	:	<u>68</u>	:	<u>60</u>	<u>80</u>	=	<u>170</u>	<u>4.5</u>	<u>4.5</u>	<u>6x10</u> 11	<u>6x10</u> 11
<u>N</u> ı	I	<u>MRO ≤ 1280</u>	1000	<u>500</u>	<u>100</u>		<u>68</u>	-	60	<u>80</u>	-	<u>170</u>	4.5	4.5	<u>6x10</u> 11	<u>6x10</u> 11
-	Ш	<u>1280 < MRO ≤</u> 1735	1810	<u>630</u>	<u>130</u>	14.1	<u>90</u>	=	75	<u>105</u>	3.	<u>195</u>	<u>4.5</u>	<u>4.5</u>	<u>6x10</u> 11	<u>6x10</u> 11
	ш	<u>1735 < MRO</u>	2270	<u>740</u>	<u>160</u>	3	108	× (82	125	=	<u>215</u>	4.5	4.5	<u>6x10</u> 11	<u>6x10</u> 11

- Same limits and test condition as Euro 6 except for PN for passenger cars.
- PN will be PN10 instead of PN23
- PN and PM will apply not only DI-PI but also all PI vehicles.
- N1 category is divided into three based on Mass in running order.

Source) https://data.consilium.europa.eu/doc/document/ST-16960-2023-REV-1/en/pdf

Euro 7 emission limits : provisional agreement on the trilogue

M2, M3, N2 and N3 vehicles

Source) https://data.consilium.europa.eu/doc/document/ST-16960-2023-REV-1/en/pdf

Pollutant emissions	WHSC (CI) and WHTC (CI and PI)	REAL Driving Emissions (RDE)
	per kWh	per kWh
NO _x in mg	200	260
PM in mg	8	-
PN ₁₀ in #	6x10 ¹¹	9 x 10 ¹¹
CO in mg	1500	1950
NMOG in mg	80	105
NH ₃ in mg	60	85
CH4 in mg	500	650
N ₂ O in mg	200	260

New measurement methodology with reliable performance for <u>additional pollutants</u> (NH₃, N₂O, HCHO)

- PN10, NMOG, NH₃, CH₄,
 N₂O as additional pollutants
- HCHO will be reviewed by the end of 2027
 - NMOG might be calculated by THC - CH₄ + HCHO (TBD)
 Change in operating conditions
 - Temperature/humidity
 - > Altitude
 - Shock/Vibration
 - Downsizing

Time line of LDV CO₂ emission standard

HORIBA © 2024 HORIBA, Ltd. All rights reserved.

Toward carbon neutrality

Estimation of Carbon reduction

Technical challenges in carbon neutral fuels

CN fuel usually emits high concentration of moisture

- \rightarrow H₂-ICE theoretically up to 35%
- Water condensation on tailpipe and sample line
- Difficulty in dry-to-wet correction after gas cooling
- Water interference to non-dispersive infrared analyzers
- Water quenching in chemiluminescence analyzers

Agenda

1	Technical challenges in future regulatory requirements
2	Key technology – "IRLAM"
3	Overview of "VERIDRIVE"
4	Performance
5	Conclusions

Mid-infrared absorption spectroscopy for gas analysis

Measurement principle	Light source	Gas cell	Features
NDIR	Thermal radiation source	Straight tube cell	Low cost
(Non-dispersive infrared spectroscopy)	+ optical filter		small size
FTIR	Thermal radiation source	Multi-pass cell	Multi-component
(Fourier transform infrared spectroscopy)	+ interferometer	(White cell)	measurement
IRLAM	Quantum cascade laser	Multi-pass cell	High sensitivity low interference
(Infrared laser absorption modulation)	(QCL)	(Herriott cell)	

XIRLAM is a registered trademark or trademark of HORIBA, Ltd. in Japan and other countries.

1. In-house manufactured QCL device

- A type of semiconductor laser emitting light with wavelength in the mid-infrared region, where many gas molecules exhibit the strongest absorption.
- The laser chip consists of several hundred layers of semiconductor thin film, and by controlling the material composition and film thickness, the emitting wavelength can be arbitrarily designed.
 - HORIBA is capable of designing and manufacturing QCLs from 4 to 10 μm.

QCL manufacturing process

2. Compact type Herriott cell

- A pair of well-designed concave mirrors works as a multi-pass cell called "Herriott cell"
- Longer optical path-length brings higher sensitivity in absorption spectroscopy
- HORIBA's original Herriott cell has a long path-length with a small internal volume, which improves the response time of the analyzer.

3. Concentration calculation algorithm

• Conventional conc. calculation algorithm for QCL

The calculation, which use spectral fitting, takes time so requires high performance computer.

New conc. calculation algorithm for IRLAM

Feature-based approach can use only a few numerical values, thus significantly reducing the amount of calculations.

Agenda

1	Technical challenges in future regulatory requirements
2	Key technology – "IRLAM"
3	Overview of "VERIDRIVE"
4	Performance

HORIBA PEMS toward Real Driving Emissions

VERIDRIVE basic specification

Measurement principle	Quantum cascade laser infrared spectroscopy (QCL-IR) Flame ionization detection (FID)			
	СО	0 - 8000 ppm, 0 - 12vol%		
	CO ₂	0 - 20vol%		
	NO	0 - 2000ppm		
Components	NO ₂	0 - 800ppm		
and	N2O	0 - 1000ppm		
Range	NH3	0 - 1500ppm		
	НСНО	0 – 50ppm		
	CH4	0 - 2000ppm, 0 - 10000ppm		
	THC	0 - 10000ppm		
Sample line temperature	190°C (wet m	easurement for all components)		
Sample gas flow rate	Approx. 3.3 L/min (20°C, 1 atm)			
External dimensions	481 (W) x 631 (D) x 385 (H) mm			
Usage environment	Temperature: -10 to 45°C ent Humidity: 80%RH or less Altitude: 0 to 3000 m above sea level			

New Compact at a glance

Customer value

- Wide range of applications such as <u>not only Real world but also</u> <u>Laboratory measurement</u>.
- Reducing power consumption by 80% and volume by 86% compared to MEXA-ONE with OVN.
- No need for consumables such as NOx converters
- ✓ <u>No liquid nitrogen</u> is used, reducing running costs
- 50 % reduction in number of cables, eliminating complications in installation
- ✓ Expanded software functions & Improved testing efficiency
- ✓ Failure reduction in PEMS Validation with IRLAM & Cross Pitot tube
- ✓ Trusted experience and expertise in RDE testing by MIRA
- ✓ **Total solution package for Euro 7 / China 7** regulatory components
- New Compact will be <u>capable of testing for Alternative fuel / H₂</u> engine toward decarbonization

Movable and Compact system

Conventional system

VERIDRIVE (New)

CO Low / High, CO₂, NO, NO₂, NH₃, N₂O, HCHO, CH₄ Low / High [QCL-IR], THC [FID]

Reduce number of pipes & cables by **50%**

Saving running cost

AUTO FILLING

Approx. 40% less power consumption compared to OBS-ONE series Approx. 80% less power consumption compared to MEXA-ONE series

No liquid nitrogen and purge gas are required

*This data is obtained by using OBS-ONE-XL which uses IRLAM technology too.

Long term stability to keep within $\pm 2\%$ of variation for 185 days.

X in 1 package for exhaust emission regulation

HORIBA can offer all solutions tailored to your regulatory compliance needs

Agenda

1	Technical challenges in future regulatory requirements
2	Key technology – "IRLAM"
3	Overview of "VERIDRIVE"
4	Performance
5	Conclusions

Good agreement with laboratory analyzers, improving development efficiency

Good agreement with laboratory analyzers, improving development efficiency

Improved robustness and flow accuracy

Ambient pressure 100 \sim 70 kPa

25

Capable with the measurement of carbon neutral fuels

Carbon neutral fuel includes high moisture concentration.

etc.) E100: H₂O Approx. 18.4% at stoichiometric combustion

*For applications with higher moisture concentrations, please contact us.

Compatible with high moisture exhaust gases when burning carbon neutral fuel

RDE Test

Route

- 94 km / 116 minutes
- Including hill climbing

Drift check

N20

	Pre Test [ppm]	Post Test [ppm]	Drift [ppm]	Drift [%]
Zero	0.0	-0.1	-0.1	-
Span	978.8	977.2	-1.5	-0.2%

NH3

	Pre Test [ppm]	Post Test [ppm]	Drift [ppm]	Drift [%]
Zero	0.2	-0.3	-0.5	-
Span	1424.3	1420.8	-3.5	-0.2%

Agenda

1	Technical challenges in future regulatory requirements
2	Key technology – "IRLAM"
3	Overview of "VERIDRIVE"
4	Performance
5	Conclusions

Conclusions

- IRLAM technology is a new analytical methodology to precisely determine concentration of a specific gas specie by suppressing interference by other gas species by means of high-resolution spectral analysis using a modulated quantum cascade laser
- VERIDRIVE is capable to handle engine exhaust with a highwater content emitted by carbon neutral fuel combustion by applying heated sampling and robust IRLAM technology

Toward developing the next generation of mobility

