

Short duration DPF regeneration by using high robustness designed DPF

Emission regulation

IND	<i>'18</i>	<i>'19</i>	<i>'</i> 20	<i>'21</i>	<i>'22</i>	<i>'23</i>	<i>'</i> 24	<i>'</i> 25	´ 26	<i>'</i> 27	<i>'28</i>
On	BS IV	BS VI Phas	se1				BSVI Phase2				
Road	(No PN)	PN reg	ulated	1		/	PN Reg	ulated un	der RDE		
	Trem III			Trem IV				Trem	V		
Non Road	(No PN regulation)			(No PN regulation)				tion)		PN Regu	lated
	CEV III			CEVIV				CEV V			
	(No PN regulation) (No PN reg				o PN regu	ulation) PN Regu			PN Regul	ated	

Table Comparison of PM/PN regulations and ATS layout in Trem/CEV IV and Trem/CEV V

	РМ	PN	main ATS layout			
Trem/CEV IV (No PN regulation)	0.025	-	E/G	DOC		
Trem/CEV V (PN regulation)	0.015	1.0×10 ¹²	E/G	DOC DPF ma	DPF Indatory to meet I	PM/PN regulation

DPF system

Saat combuction type

□ Diesel car needs DPF system

Table Passive regeneration and active regeneration comparison

	Passive	Active				
Timing	During driving	During driving	Parked regeneration (Reset regularly)	■NO2 regeneration (250°C~)	■O ₂ regeneration (550°C~)	
Temperature 250°C~		550°C~ 550°C~ ·2N		$2NO_2 + C \rightarrow 2NO + CO_2$	·C+O ₂ →CO ₂	
Regeneration speed	Low	High	High	$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 0 \end{bmatrix} \xrightarrow{1} (0, 0) \xrightarrow{1} (0) \xrightarrow{1} (0)$		
While regeneration	Vehicle running	Vehicle running	Vehicle stop		\mathbf{CO}_2	
System risk	-	Abnormal regeneration /ATS damage	Abnormal regeneration /ATS damage	Soot(C)	Soot(C)	

Value for end users in Non-road vehicle application

On-road vehicle
(Transportation vehicle)Non-road vehicle
(Working vehicle)Image: Constraint of the second second

Working vehicle

4/8

When serious DPF damage occurred due to low robustness design , vehicle will not perform normally and need to stop until parts are changed in a worst case \rightarrow Consume both time and money!

Passenger car : There are substitute public transportation (Train, Bus, Taxi, Ship and Air plane) Working vehicle : No substitution! \rightarrow Work needs to stop \rightarrow High influence to end users

> Example :End users' workability decrease due to vehicle damage, but also DPF parked regeneration itself consumes time!

Robust DPF protect from damage and less parked regeneration duration are big value for end users

IBIDEN DPF : R-SiC characteristics

✓ R-SiC's high thermal conductivity makes it possible to accumulate more soot in DPF than that of Cordierite.

Short-time regeneration concept

Short time parked RG concept

Abnormal regeneration risk confirmation

Reaction rate formula

Increasing regeneration temperature =Short time soot regeneration

 R-SiC has higher soot capacity than Cordierite even when applying high regeneration temperature

Parked regen. test under various gas temp. condition 7/8

✓ R-SiC has high SML→ Conduct High Temperature Regeneration possible.
→ Reduction of regeneration duration and fuel consumption can be achieved.

Table Test condition condition						
Engine type	1.6L_TC					
RG	Soot amount	5g/L				
condition	Gas temp.(A-15mm)	550~650 degC				
	Keep time	5~45 min				

Table DPF information

D143.8x177.8mmL

-Coated Market Cord.

-Coated R-SiC

DPF size

Test DPF

Summary

R-SiC High robustness contribution point

R-SiC high robustness can contribute to secure longer working time of vehicle users, lower fuel consumption, and reduction of ATS calibration resources/cost

Thank you for your attention. Let us support you more !!

