Bio-Fuels: Opportunities & Challenges from Indian Perspective

Session: Future Fuel & Fuel blends

ECMA 15th International conference – "Clean Air Today, Everyday"

Mr. Harmeet Singh

Deputy General Manager, Powertrain System Development

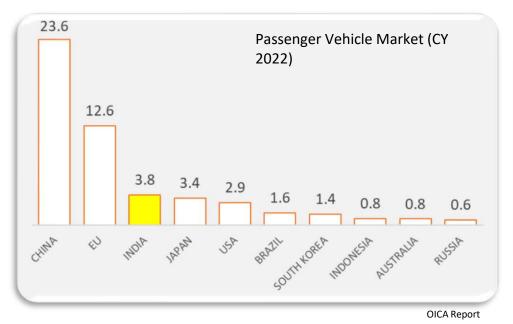
Contents

☐ Why India needs Bio-Fuels?

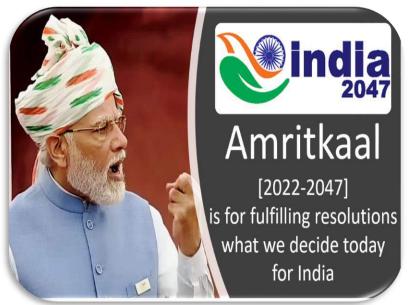
- ☐ Bio-Fuel: Opportunities
- ☐ Bio-Fuel: Challenges

- ☐ Way forward
 - Expectations from Emissions Control System
 - Enablers for Bio-fuels

India today is shifting gears to become a major economy

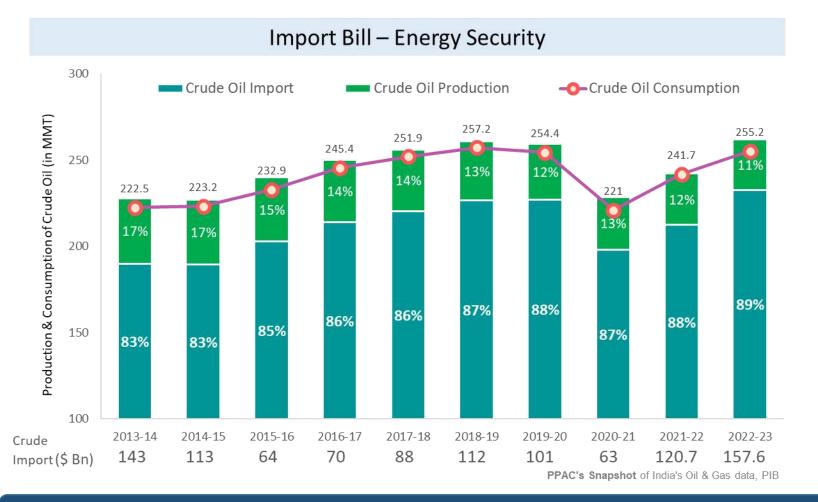


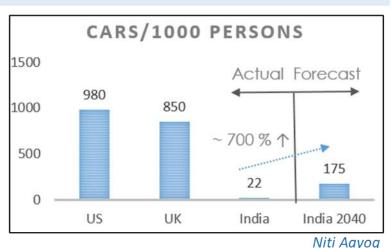
- India: 5th largest Economy & 3rd Largest PV Market in World
- Mobility required to support the Economic progress to be become a Developed nation
- This growth story must be scripted with responsibility towards Environment


Economic Standing

2012 2017 2022 01 U6 U6 U6 U6 U6 02 Chine Chine Chine Chine 03 Dupun Dupun Dupun 04 Dupun Dupun 05 Dupun 06 Sile U6 07 Dupun 07 Dupun 08 Dupun 09 Dupun 09 Dupun 00 Sile U6 00 Dupun 0

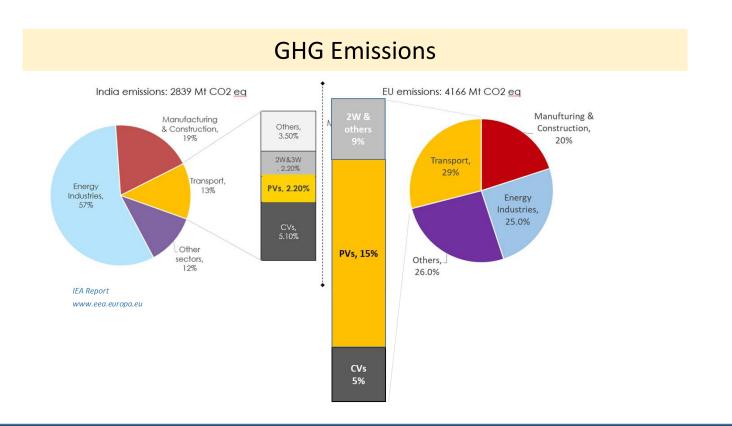
Mobility


Sustainable Development

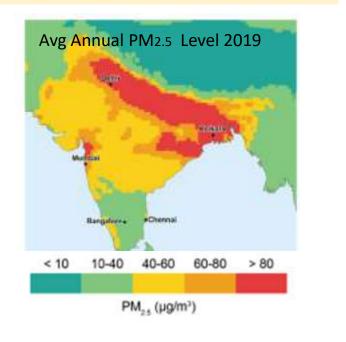

1. Challenge of Energy Security & growing need for mobility

- With 158 Bn \$ import bill, ~89% of crude oil is imported.
- Transport sector accounts for ~37% of crude consumption. PVs contribute ~4.3% of total crude
- Demand for fuel can potentially increase, impacting further the **Energy security concern**.

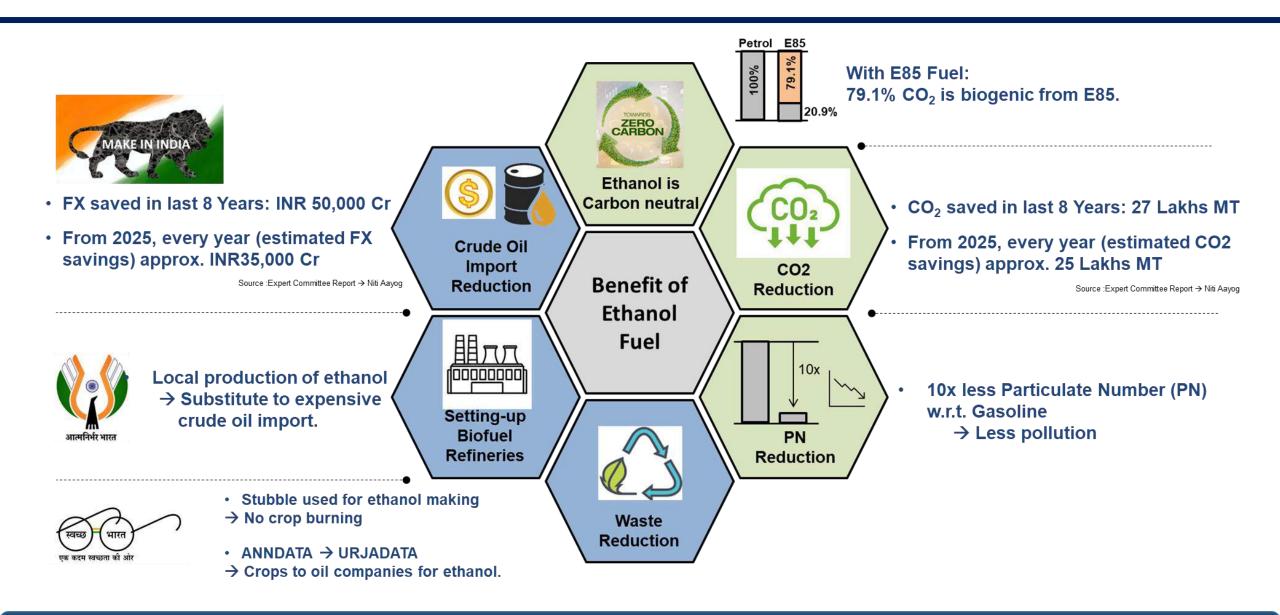
Mobility needs



- .:-ad
- India is heavily under-motorized
- India needs higher mobility for
 - > Country's Economic development
 - > Improve quality of life

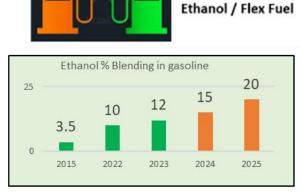

2. GHG & Local Emissions

- India is the 3rd largest GHG emitter (behind CHINA & US) but Sectoral contributions are way different
- Passenger Vehicles in India contribute 2.2%, while 15% in EU towards overall country level GHG emission
- North and Gangetic plains also facing a Local pollution issue (weather & farm fire aggravate it)
- India must work for present challenges & sustainable paths for ambitious future growth plans

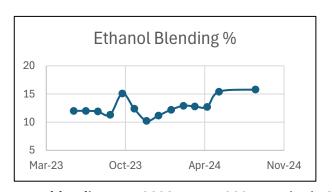


Biofuels can provide solution for both the above challenges also

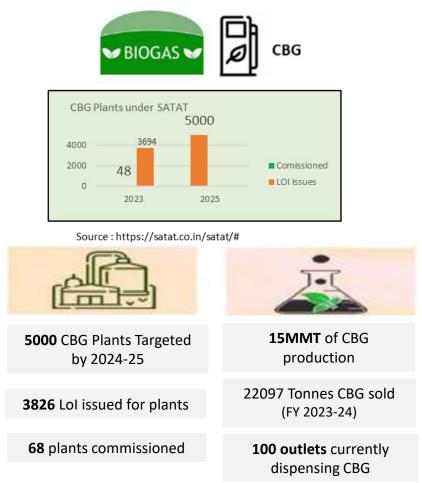
Benefits of Biofuels

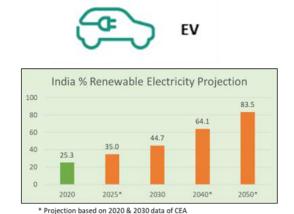

Reduce fuel imports, Curb GHG & PN Emissions & Benefit agrarian economy

Initiatives by GOI



Govt is taking measures to adopt Alternate fuels to meet national GHG targets & Energy security


- Automotive industry is developing and adopting vehicles with the policy of GOI
- Energy producers are also shifting to renewable fuel/energy availability

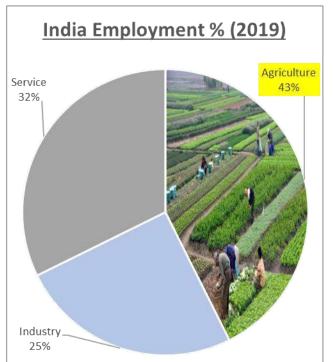


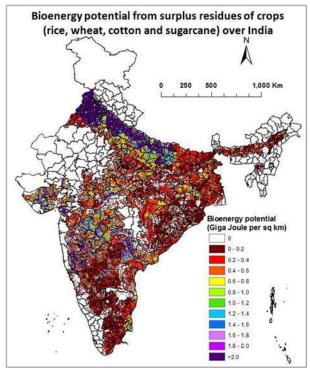
Source: Roadmap for Ethanol Blending in India

Average blending Nov 2023 to Aug 2024 touched 13.6 %

 Initiatives are going on to meet the targets for renewable electricity production ☐ Why India needs Bio-Fuels?

☐ Bio-Fuel: Opportunities


☐ Bio-Fuel: Challenges


- ☐ Way forward
 - Expectations from Emissions Control System
 - Enablers for Bio-fuels

1. India's Agriculture based Economy

Agriculture based Economy

- Huge potential for bio based low carbon energy sources Residue
- · Opportunity to build agro based economy

Agriculture products & waste has huge potential

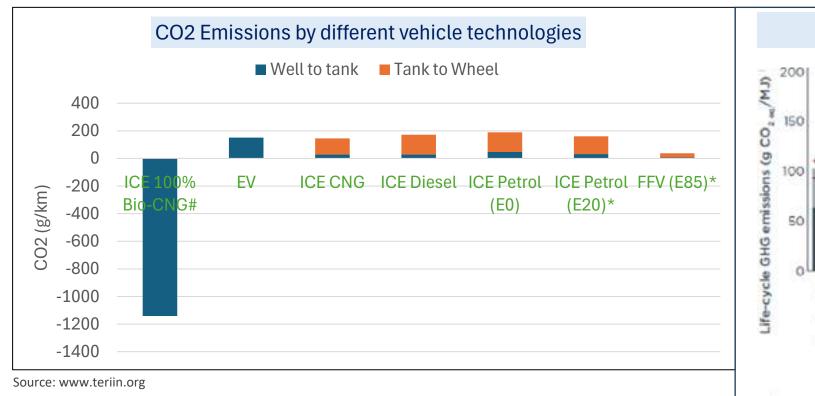
Bio-Ethanol Production Potential

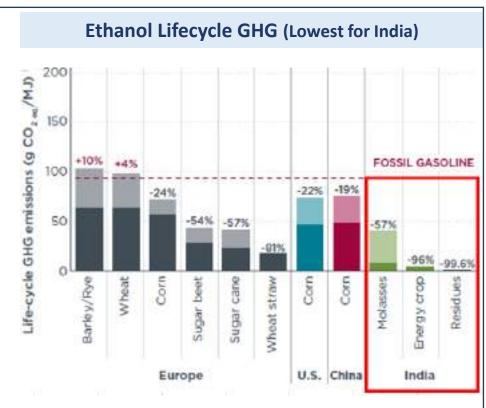
(Capacity Augn	nentation (in Cr. Lt)	
Year		pacity Requireme	ent
rear	Grain	Molasses	Total
2019-20	258	426	684
2020-21	260	450	710
2021-22	300	519	819
2022-23	350	625	975
2023-24	450	725	1175
2024-25	700	730	1430
2025-26	740	760	1500

Department of Food and Public Distribution(DFPD) estimates

1 tonne = 380ltr Ethanol, PIB 24 MAR 2021

Bio-CNG Production Potential

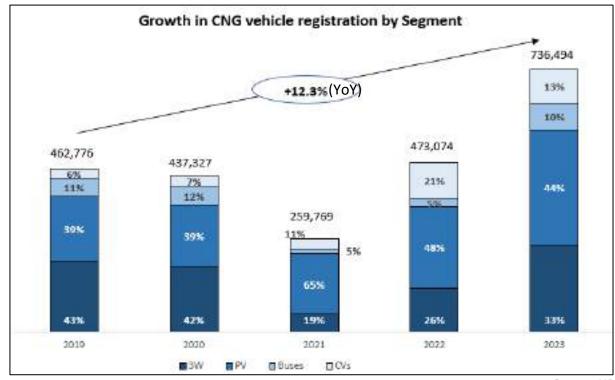

Source	Annual Waste (in Mn Metric Tonnes)	Bio-CNG generation per ton	Total Bio-CNG Generation Potential
Agricultural Waste	600	0.1	60
MSW	66	0.05	3.3
Sum Total	Bio-CNG Potentia	(MMT)	63.3


Nomura

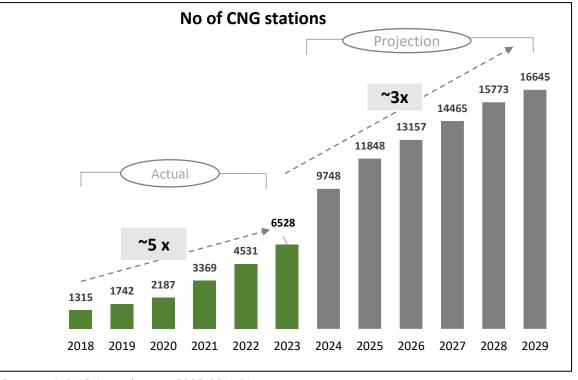
2. Carbon Intensity of Bio-Fuels

- Comparative CO₂ Impact based on carbon intensity of fuels reveals considerable potential by shifting to Bio-Fuels (Ethanol and Bio CNG)
- Based on Well to Tank emission intensity, India has advantage to utilize while also ensuring sustainable growth

Notes:


*ICE Petrol (E20), ICE HEV (E20), FFV (E85) WTW derived from TERI report considering Biogenic CO2 for Ethanol # Tailpipe CO2 is sees as 117g/km, but as per IPCC principle & TERI report, biogenic emissions for CBG = 0

India has advantage in terms of lifecycle GHG Emissions for Bio-Fuels


3. Trends towards acceptability of alternate fuels

CNG station infrastructure (Actual and Projection)

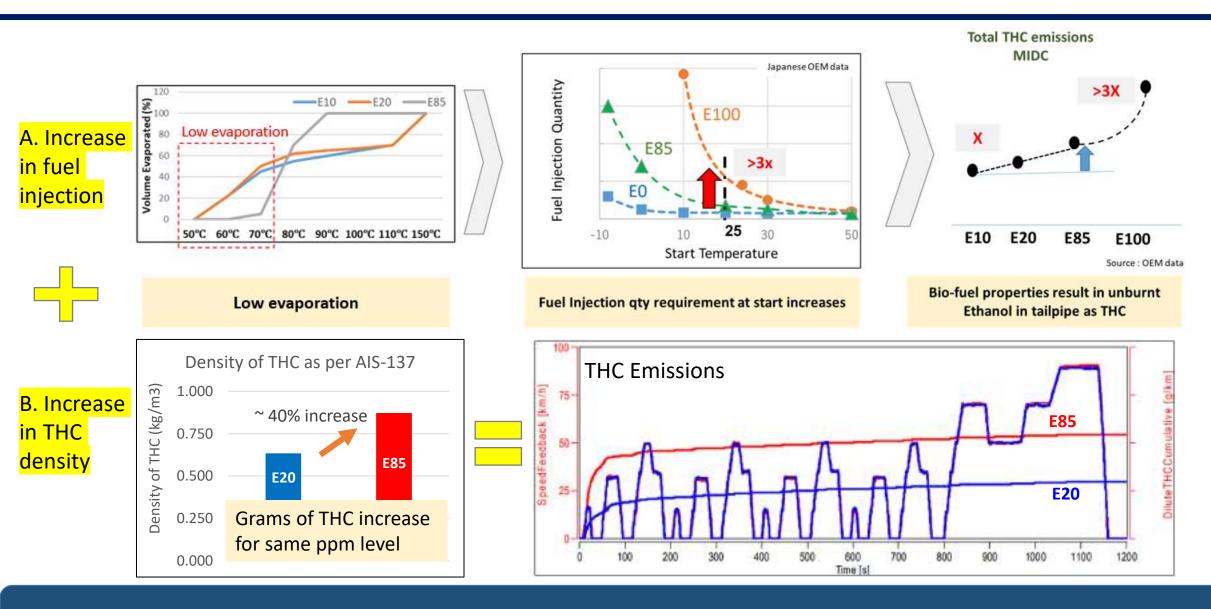
Source: NRI

Source: MoPNG Annual report 2022-23, NRI

- CNG vehicle sales have increased in all segments since covid and reached to record highest in FY 2023.
- PV segment has had significant share in overall numbers

 Increasing demand of natural gas in automotive sector is supported by continuously improving infrastructure by Govt

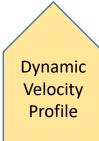
Widely increasing CNG station infrastructure & Customer acceptability for gaseous fuels point towards likely acceptance of CBG


- ☐ Why India needs Bio-Fuels?
- ☐ Bio-Fuel: Opportunities

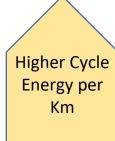
☐ Bio-Fuel: Challenges

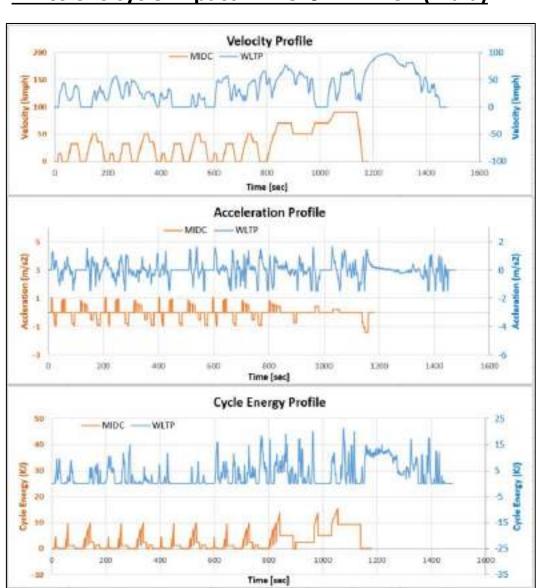
- Way forward
 - Expectations from Emissions Control System
 - Enablers for Bio-fuels

1. Emission challenge with Ethanol

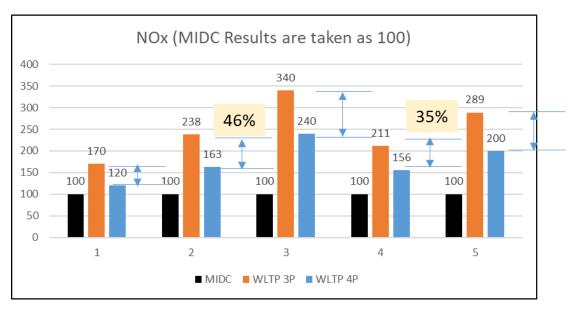


Need Solutions for reducing Cold Start Emissions


2. Emission Challenge: MIDC -> WLTP-3P (2027 Onwards)

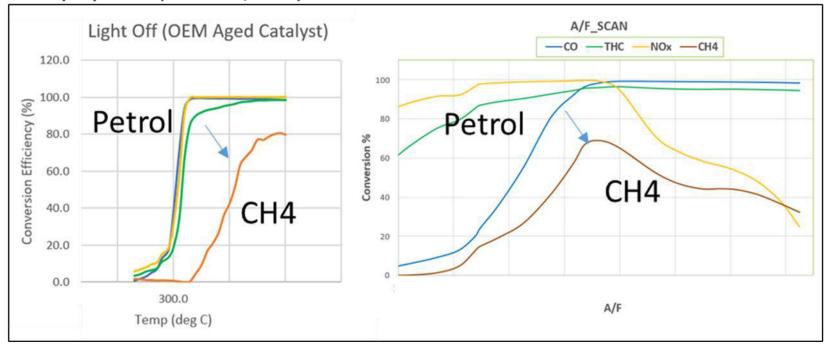


Emissions cycle impact MIDC → WLTP 3P (India)

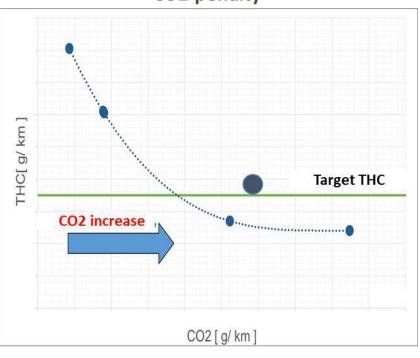


India's WLTP 3-Phase is stiffer than EU 4-Phase

- WLTP is tougher than MIDC
- WLTP 3P (India) is tougher than WLTP 4P (EU)
 (WLTP 4P is longer than WLTP 3P, Emissions are mainly at start)


Development of High Performance Catalyst is required

3. Emission challenge with Bio-CNG



- Methane is difficult to convert and requires higher temperatures for conversion in TWC
- Penalty of CO2 is there to meet THC emissions

Fuel properties (Bio-CNG / CNG)

Conversion performance with Methane is much lower to Gasoline

Extra fuel is used to reduce THC

Current approach increases overall GHG emissions performance of vehicle also

Make regulatory provision for NMHC / NMOG rather than THC (like US, Japan, Brazil)

3. Emission challenge with Bio-CNG

Methane is not pollutant: International markets regulate NMHC/NMOG pollutants not THC

TIER 3 FTP STANDARDS

US FEDERAL
TIER 3 STANDARDS

Tier 3 Certification Bin Standards (FTP, 150,000 mi)							
Bin	NMOG+NOx (mg/mi)	PM¹) (mg/mi)	CO (g/mi)	HCHO (mg/mi)			
Bin 160	160	3	4.2	4			
Bin 125	125	3	2.1	4			
Bin 70	70	3	1.7	4			
Bin 50	50	3	1.7	4			
Bin 30	30	3	1.0	4			
Bin 20	20	3	1.0	4			
Bin 0	0	0	0	0			

CALIFORNIA

LEV III STANDARDS

Passenger Ca	ars and Light	Duty Trucks	≤ 8,500 lbs
--------------	---------------	--------------------	-------------

Durability (mi)	Emission Category ¹	NMOG+ NOx (g/mi)	O (g/mi)	Formalde- hyde (g/mi)	Particulates ²⁾ (g/mi)
	LEV160	0.160	4.2	4	0.01
	ULEV125	0.125	2.1	4	0.01
150,000	ULEV70	0.070	1.7	4	0.01
(optional)	ULEV50	0.050	1.7	4	0.01
	SULEV30	0.030	1.0	4	0.01
	SULEV20	0.020	1.0	4	0.01

Japan Emissions Regulation

			Test Mode	Unit	co	NMHC	NOx	PM ¹³
	2000	Passenger Car	10-15 Mode	g/km	0.67	0.08	0.08	
	2000	Passenger Car	11 Mode	g/test	19.0	2.20	1.40	
	2002	Mini Commercial Vehicle	10-15 Mode	g/km	3.30	0.13	0.13	
New Short Term	CUUC	Pili il Collini ercial verilcie	11 Mode	g/test	38.0	3.50	2.20	
iew Short Term	2000	Light Commercial Vehicle (GVW ≤ 1.7 t)	10-15 Mode	g/km	0.67	0.08	0.08	
	2000	Eight Commercial Vehicle (GV W S 1.7 t)	11 Mode	g/test	19.0	2.20	1.40	
	2001	Medium Commercial Vehicle (1.7 t < GVW ≤ 3.5 t)	10-15 Mode	g/km	2.10	0.08	0.13	
	2001 Me	Medium Commercial venicle (1.7 t < GVW § 3.5 t)	11 Mode	g/test	24.0	2.20	1.60	
	2005	Passenger Car			1.15			
lew Long Term	2007	Mini Commercial Vehicle	JC08	g/km	4.02		0.05	
iew Long Term	2005	Light Commercial Vehicle (GVW ≤ 1.7 t)	JCOO	g/kill	1.15			
	2005	Medium Commercial Vehicle (1.7 t < GVW ≤ 3.5 t)			2.55	0.05	0.07	
		Passenger Car	JC08		1.15	0.05	0.05	0.005
ost New Long	2009	Mini Commercial Vehicle		g/km	4.02			
erm	2009	Light Commercial Vehicle (GVW ≤ 1.7 t)	3000	gran	1.15			
		Medium Commercial Vehicle (1.7 t < GVW ≤ 3.5 t)			2.55		0.07	0.007
	2018	Passenger Car			1.15	0.10 0	0.05	0.005
uture		Mini Commercial Vehicle	WLTP	0.00	4.02			
egulations	2019	Light Commercial Vehicle (GVW ≤ 1.7 t)		g/km	1.15			
		Medium Commercial Vehicle (1.7 t < GVW ≤ 3.5 t)			2.55	0.15	0.07	0.007

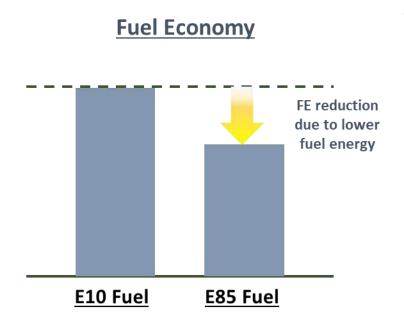
BRAZIL

"PROCONVE" STANDARDS FOR GASOLINE PC, LCV AND DIESEL LCV

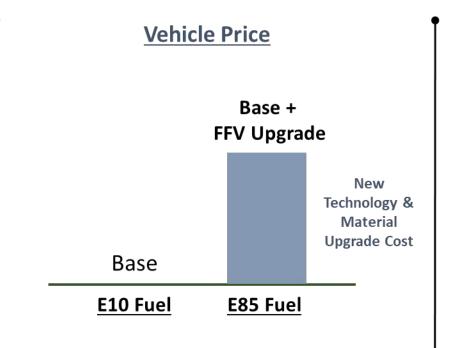
Vehicle	Standard (g/km)	NMHC	со	NOx1)	нсно	PM ²⁾
	L5		2.0	0.12 (0.25)	0.02	0.05
PC	L6	0.05	1.3	0.08	0.02	0.025
	L7 ³ 1.3	1.3	0.03	0.01	0.005	
LCV ≤	L5		2.0	0.12 (0.25)	0.02	0.05
	L6	0.05	1.3	0.08	0.02	0.03
1,700 kg	L73)		The state of the s	0.01	0.005	
LCV > 1,700 kg	L5	0.00	2.7	0.25 (0.43)	0.04	0.06
	L6	0.06	2.0	0.25 (0.35)	0.03	0.04
	L73)	0.05	1.3	0.05	0.015	0.01

Reconsideration of CH4 as pollutant, to be aligned as per international markets

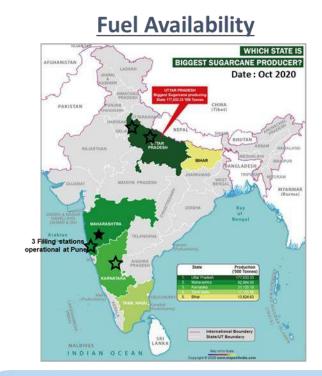
4. Non-Alignment of Regulations & Fiscal Policy with Biofuels



Country /	Multi Pathway	Regulation Alignn	nent for Biofuels	Fiscal Policy align	ment for Biofuels		
Region	approach for Carbon Neutral (Bio-fuel + Electrification)	Emissions (THC → NMOG/NMHC)	CAFÉ (Biogenic CO2 Correction)	Bio-fuel price parity for energy	Bio-fuel vehicle Tax incentive (FFV etc)		
USA	0	0	• O	0	0		
Brazil	0	0	0	0	0		
India	0	X	▼ X	▼ X	X		
Europe	X	X	Х	X	X		
Present approach → EV only from 2035, Not support Bio-fuels, E-fuels							


Enabling provisions are required for Bio-Fuel adoption

5. Customer Acceptability



Price of E85 fuel to be at least 35% lower than E10 fuel


Appropriate tax incentives to promote FFVs

Consistent and quality fuel availability across nation

6. Technology development for FFV

Engine HW changes require extensive Development (E20 to E85)

- Extensive Reliability tests at Proto and Final tooled up stages.
- Vehicle Calibration / Validation with intermediate fuel blends.
- As good as new development

Contents

☐ Why India needs Bio-Fuels?

- ☐ Bio-Fuel: Opportunities
- ☐ Bio-Fuel: Challenges

- ☐ Way forward
 - Expectations from Emissions Control System
 - Enablers for Bio-fuels

Bio-fuel adoption in India: OEM perspective on way forward

Policy Enablers for Biofuels

- 1. Regulatory support
 - CAFÉ: Biogenic CO2 accounting
 - Emissions : THC → NMHC / NMOG
- 2. Customer Acceptability
 - Price parity of Fuel as per energy
 - Price parity for Vehicle cost
- 3. Roadmap beyond 2025
 - Bio-fuel availability

Expectations from Emission Control System Partners

- 1. Higher performance Aftertreatment system
 - Ethanol /Pet light-off < 250°C (OEM Aged)
 - CH4 light-off <350°C (OEM Aged)
 - Wider conversion window for Bio-CNG / CNG
 - Low thermal mass substrate (>55% porosity)
- 2. HC Trap Catalyst with >30% emissions improvement
- 3. Alternate metal Catalyst to make it affordable
- 4. Focused Development for Biofuel's aftertreatment

Let's work together to achieve → Carbon Neutrality by Bio-fuels

Thank You

Maruti Suzuki WagonR FFV proto

