

Real Driving Emission Control for Heavy-Duty Vehicles: Challenges for Euro 7/BS7

NATIONAL AUTOMOTIVE TEST TRACKS ECT-2024

AUTHORS:-MS. TULIKA MAZUMDAR MR. NITIN MARATHE DR. MANISH JAISWAL

ABOUT US

NATRAX

INFRASTRUCTURE & FACILITIES

NATRAX HUB

I DI LI DI L

NATRAX is one of the state-of the-art automotive testing and certification center under National Automotive Board (formerly known as NATRIP Implementation Society) and a flagship project of Ministry of Heavy Industry.

INSTRUMENTATION

FACILITY

AGENDA

- Global emission scenario
- Journey so far
- Journey from BS4 to BS6
- Euro 7/BS7 Emission Standards An Overview
- The Role of Testing Agencies in Adapting to BS 7
- Challenges in adopting BS 7
- Way forward

自己担任

CO2

....

10000

CO2

1.1

CO2

1.1

CO2

-

304

29

00

1111

I I I I

1000

3434 3402 54

EMISSION LEGISLATION OVERVIEW "WORLDWIDE"

(NATRAX)

EFFECT OF SUCESSIVE BHARAT STAGE STANDARDS

CHANGE

0%

71%

89%

50%

EFFECTIVE OF SUCCESSIVE BS STANDARD ON PARTICULATE MATTER

BS-III

2010

5.45

0.78

5

0.1

BS-IV

2017

4

0.55

3.5

0.02

BS-VI

2020

4

0.16

0.4

0.01

BS-I

Gm/Kwh

BS-II

2005

ADDITIONAL TECHNOLOGIES REQUIRED TO MEET EMISSION LIMITS

EMISSION	BSIV		BSVI	
CO Carbon Monoxide	_		_	
HC Hydrocarbons			Doc	
NOx Nitrogen oxides	EGR	SCR	EGR + SCR	SCR
PM Particulate Matter	POC	—	DPF	DPF
	EGR+POC	SCR	EGR + SCR + DOC + DPF	SCR + DOC + DPF
EGR Exhaust Gas Recirculation Diesel Oxida		DOC kidation Catalyst	DPF iesel Particulate Filter	SCR Selective Catalytic Reduction
NOx PM HC			NOx PM	NOx

EURO 7/BS7 EMISSION STANDARDS – AN OVERVIEW

8888

CO2

-

CO2

CO2

-

304

29

00

間回

CO2

1000

.

BS7-WHAT'S NEW FROM BS 6

Pollutant Values in Diesel Vehicles

COMPARISON BETWEEN BS 6, BS 6 PHASE 2 AND EURO 7

Criteria	BS6	BS6 Phase 2	Euro 7	
Implementation Year	April 2020	April 2023	Expected LDVs from 2027	
			HDVs from 2028 and Tyre emissions from 2028	
Pollutants Regulated	CO, NOx, PM, HC	CO, NOx, PM, HC, Particle Number (PN)	CO, NOx, PM, HC, PN, Methane (CH ₄), Ammonia (NH ₃)	
Emission Limits for Passenger	CO: 1.0, NOx: 0.08, PM: 0.0045,	CO: 1.0, NOx: 0.08, PM: 0.0045, HC: 0.1	CO: 1.0, NOx: 0.06, PM: 0.0045, HC: 0.1, NH ₃ : 0.01	
Cars (g/km)	HC: 0.1		(Limits mostly same as EURO-6 PN10 is now regulated	
			instead of PN23, with lower cut-off point of 10nm instead	
			of 23nm, Particle number limit is more stringent)	
Emission Limits for Heavy-	CO: 1.5, NOx: 0.46, PM: 0.01	CO: 1.5, NOx: 0.46, PM: 0.01, PN:	CO: 1.5, NOx: 0.35, PM: 0.01, PN: 6.0x10 ¹¹ , NH ₃ : 10ppm	
Duty Vehicles (g/kWh)		6.0x10 ¹¹		
Emission Control Technologies	Diesel Particulate Filter (DPF), SCR	DPF, SCR, Gasoline Particulate Filter (GPF)	Advanced DPF, SCR, Ammonia Slip Catalysts, GPF	
Real Driving Emissions (RDE)	Introduced (Light-duty	Stricter RDF norms for all vehicle types	Comprehensive RDF for all vehicle types	
	vehicles)	ouncer RDE norms for an venicle types	comprenensive RDE for an venicle types	
Onboard Diagnostics (OBD)	OBD Stage 1	OBD Stage 2 (more advanced)	Enhanced OBD with real-time monitoring	
Durability Requirements	160,000 km	200,000 km	240,000 km	
Test Cycles	Modified Indian Drive Cycle (MIDC)	Worldwide Harmonized Light Vehicles Test Procedure (WLTP)	WLTP and more realistic urban driving conditions	
Fuel Efficiency Impact	Moderate impact	Improved fuel efficiency requirements	Stricter fuel efficiency requirements	
Fuel Efficiency Impact	Moderate impact	Improved fuel efficiency requirements	Stricter fuel efficiency requirements	
Stringency Level	Less stringent than Euro 6	Closer to Euro 6 standards	Most stringent emission standards globally	

THE ROLE OF TESTING AGENCIES IN ADAPTING TO BS7

間回

CO2

CO2

-

CO2

1.1

CO2

-

304

29

00

THE ROLE OF TESTING AGENCY IN ADAPTING TO BS 7

- The impact of climate (heat, humidity, and pollution levels)
- Diverse terrain and driver driving behavior
- WLTP difficult as per Indian Scenario

In certification processes for accuracy and reliability

- Use of PEMS
- Advanced sensor Laboratory Testing
- technology-
- High precision equipment
- Tyre emission test facility

To ensure emission performance throughout the vehicle's lifespan.

CHALLENGES OF REAL DRIVE EMISSION (RDE) **TESTING FOR HEAVY VEHICLES UNDER EURO** 7/**BS**7

Increased R&D Cost	Need heavy investment to comply with RDE protocols, increasing costs.
	Heavy vehicles need diverse test cycles and the deployment of mobile emission measurement systems (PEMS), raising operational costs.
Technical Complexity in	Difficulty in collecting accurate, real-time emissions data during various driving conditions.
Measurement	Requires advanced sensors and data analytics tools.
Drive Cycle Mismanagement	Emissions vary significantly based on load, weather, and road gradients, complicating compliance for different heavy-duty vehicles.
	India has extreme terrains, diverse traffic and extreme temperature conditions
Data Calibration & Validation	Ensuring real-world emissions data matches laboratory standards.
	Increased R&D Cost Technical Complexity in Measurement Drive Cycle Mismanagement Data Calibration & Validation

Component	Larger catalytic converters and advanced EGR systems are required for RDE
Upgrades	testing.

CHALLENGES OF NON-TAILPIPE EMISSIONS

Tyre Wear & Microplastic Emissions	Tyre wear releases microplastics, which are difficult to control.
High Frequency Data Logging	Real-time tracking of non-tailpipe emissions requires efficient data systems.
Data Storage & Security	Storing large datasets from emissions monitoring raises concerns about data integrity and privacy.
Cost Implications for Manufacturers	Significant R&D investments increase production costs for heavy- duty vehicles.
Infrastructure Deficiencies	Inadequate infrastructure for refueling and maintaining advanced emission technologies hinders mass adoption.
Supply Chain Constraints	Semiconductor shortages and supply disruptions further slow down the adoption of emission control systems.

(NATRAX)

BROADER CHALLENGES IN BS 7 IMPLEMENTATION

Increased Vehicle Costs

• High-tech components like DPFs and advanced Onboard Diagnostics (OBD) raise vehicle prices.

Fuel Efficiency Loss

• Due to stronger Diesel Particulate Filters (DPFs) and Selective Catalytic Reduction (SCR) systems, fuel efficiency could be compromised.

Maintenance Challenges

• Emission control systems require frequent maintenance, driving up costs for both manufacturers and consumers.

Emission Control Technologies

• Systems like Diesel Oxidation Catalysts and EGR can cause back pressure, affecting engine performance.

CHALLENGES IN TECHNOLOGY ADOPTION DUE TO IMPROPER MARKET PRACTICES

OTHER CHALLENGES

Industry

- Increase use of Platinum and Iridium in SCR can lead to theft
- Increase use of Ad Blue urea
- Increase in back pressure can lead to poor engine performance and more GHG emission
- Use or RDE and OBD can cause frequent malfunction if driver is not educated

Poor Maintenance Practices

- Remolding and retreading of tyres
- Poor maintenance of Air intake system
- Engine Cooling System
 Mismanagement

Overloading and Customization- After Market

- Overloading Impact on Tires
- Suspension Modifications
- Fuel Tank Modification

Engine Oil Management and Broader Solutions

- Use of Correct Engine Oil Quality
- Need for driver education
- Reliability measures

WAY FORWARD

