Solving the Challenge of Future Emission Regulations and Decarbonization at the same time: A holistic Approach

October 23rd, 2024

Evangelos Georgiadis, Chief Technology Officer Thomas Wolff, Head of catalyst & coating, Dinex Karthik Tumkur Manjunath, Engineering manager, Dinex Ind

Table of contents

going the extra mile

ATS concept for BS7/Euro 7 & Tier 5 diesel ICE

ATS concepts for H₂ ICE & near-zero emissions

Table of contents

going the extra mile

2050 technology & regulatory outlook

ATS concepts for H₂ ICE & near zero emissions

Energy carriers Vs Applications 2050 outlook

going the extra mile

The heavier the load and the longer the range, the less suitability for electrification & the more reliance on combustible fuels.

Take-aways:

✓ No silver-bullet technology

October 23rd, 2024

- Different energy carriers are suitable for different application requirements
- Renewable hydrogen is required to decarbonise transportation

Expansion of focus

going the extra mile

Environmental concerns

- All about pollutants in our environment
- Particles, HC, CO, NO_X , SO_x
- Health risk to people, animals and ecosystems
- Most often a local, regional concern ("the air we breathe")

Climate concerns

- All about greenhouse gases
- CO₂, CH₄, N₂O
- Harmless to the environment (relatively)
- A global concern leading to climate change
 - ✓ Revised European Union CO₂ standards for Heavy-Duty vehicles
 ✓ EPA Phase 3 GHG standards

Dinex Product Portfolio *Catalyst & Canning Technologies under one roof*

Table of contents

going the extra mile

ATS concept for BS7/Euro 7 & Tier 5 diesel ICE

ATS concepts for H₂ ICE & near-zero emissions

ATS layout for diesel engines BS7/Euro 7 on-road & Tier 5 offroad ATS (>56kW)

ECT-2024, 15th international conference

Technology requirements & Dinex innovation portfolio

Engine test setup 1- and 2-stage SCR

going the extra mile

- ✤ 4.4L Tier 4f engine, no EGR, 120kW
- Engine out NO_x: 9 g/kWh in WHTC (Euro 7 expected at \sim 7g/kWh)
- ✤ 2 x multihole pressure-based urea dosing systems
- Simplified dosing strategy
- E-heater

7.5"x8", 300/9, Pt:Pd (2:1), 3 g/cft

1x 7.5"x4", 400/4, Fe/Cu-SCR

2x 7.5"x4", 400/4, Cu-SCR

- Flexible flanged design for fast exchange of catalyst samples (resulting however in high thermal mass)
- Step 1: Non-optimised ATS: no insulation, thick flanges, exhaust gas analyser modules → Worst case scenario in terms of emission performance, aiming to validate the ATS layout and new catalyst technology
- Step 2: Optimised ATS, more representative in terms of emissions

Catalyst setup:

- **SCR1:** 7.5"x5", 400/4, V-SCR
- **DOC:** 7.5"x5, 400/4, Pt:Pd (4:1), 10 g/cft
- DPF:
- SCR2/1:
- SCR2/2,3:
- SCR2/4: 1x 7.5"x4", 400/4, Cu-SCR+ASC

All components pre-aged before start of test V-SCR \rightarrow 580°C / Fe/Cu \rightarrow 650°C – 50h

Euro 7 NO_x limit: 0.2 g/kWh, N_2O limit: 0.2 g/kWh

NO_x conversion performance

going the extra mile

	NO _x cold	NO _x hot	NO _x combined 20:80	N ₂ O
Reduction after SCR1	70%	72%	71.6%	
Reduction after SCR2	91.6%	99.3%	97.8%	
TP emission, g/kWh	0.76	0.06	0.20	0.09

11 October 23rd, 2024

ECT-2024, 15th international conference

Passive thermal management Temperature and deNOx efficiency gain

going the extra mile

- Insulated & leak-tight decoupling (DLTD)
- Insulated clamps installed with EMTC + LTM setup
- 12mm insulation installed in LTM pipes and cones
- DeNOx efficiency calculated on 5:95 ratio between cold & hot

Note: > 20mm is base insulation setup (20mm)

- Exhaust manifold & turbine housing insulation. (EMTC)
- Low thermal mass components (LTM)

ECT-2024, 15th international conference

Cycle Avg Temperature gain in Cold & Hot NRTC Cycle

Summary of results after optimisation

Note: These ATS concept results are based on specific engine flow and temperature conditions and may vary with different customer-specific engine conditions.

© 2024 Dinex. All Rights Reserved.

going the extra mile

- Engine raw emissions from Euro VI & Stage V / Tier 4 engine.
- Thanks to advanced insulation, temperature profile improved and earlier urea injection times were achieved (cold WHTC):
 - SCR1: 101s (effective 315s)

• SCR2: 414s

- DPF regeneration strategy defines DOC, SCR design & dosing strategy
- Same total SCR volume between 1stage & 2-stage SCR

Conclusions BS7/Euro 7 & Tier 5 diesel ICE

- Latest Dinex catalyst and canning technologies were tested on a 1-stage & 2-stage SCR dyno setup – introduction of Vanadate SCR, Fe/Cu SCR & low PGM DOC
- A 2-stage SCR system is necessary to meet Euro 7 on-road & Tier 5 offroad emission limits - it is possible without active thermal management
- > For a 1-stage SCR and further reduction of NO_x and N_2O emissions in low load cycles, active thermal management (e-heater or heated urea injector) is required
- The PGM load on the DOC was at a low level, showing the potential of new washcoat development to reduce PGM load, but the DPF regeneration strategy will define the final design in respect of load and PGM ratio

Table of contents

going the extra mile

2050 technology & regulatory outlook

ATS concept for BS7/Euro 7 & Tier 5 diesel ICE

ATS concepts for H₂ ICE & near-zero emissions

H₂ ICE - Key requirements on the ATS

- ✓ Reach near-zero emissions, for example $NO_x < 15 mg/kWh$, as direct comparison against H_2 Fuel Cells is expected
- \checkmark Overall lower raw emissions from the engines \rightarrow Cost-effective and more compact ATS is expected
- \checkmark No N₂O generation zero-CO₂ technology
- ✓ High H_2O content in the exhaust → Selection of corrosion-resistive materials
- ✓ High H₂O content in the exhaust → Selection of catalytic coating which is more resistant to hydrothermal ageing → V-SCR Vs Cu-SCR
- ✓ Optimise development effort & cost by reusing ATS technology from diesel BS7/Euro 7/Tier 5 development, while adjusting to the specific attributes of the H_2 ICE

ATS layout for H₂ engines From diesel to H₂ ATS

going the extra mile

- ✓ Keep advanced insulation
- ✓ Replace DOC by NSC or HOC
- Reuse filter technology (but simplify)

- ✓ Alumina/Ceria based wash coat
- ✓ PGM load 30 50g/cft
- ✓ NOx storage: 140µmol/g coating (HT aged 500°C / 100h)

V-SCR: XVO₄, where X represents Mn, Fe, Cu or Er or mixtures Low N₂O formation or

NSC or

HOC

Cu-Zeolite based
SCR for highest deNO_x

HINEX SCR

 ✓ Cordierite filter at low pore size and porosity of 45% (GPF or high filtration DPF)

PF

- ✓ Adjustments via wash coat
- ✓ No PGM

H2 ICE – ATS Concepts

Dinex H_2 ICE technologies for different ATS configurations

H₂ engine dyno setup Catalyst test setup with NSC & SCR

going the extra mile

Collaboration with **IFPEN** (Lyon) for ATS test campaign on H_2 ICE

Engine: 6 cyl, 8L, 210kW Diesel converted to Hydrogen

Renault Truck Engine developed in the framework of "PLH2" Consortium^[1]

NRTC: 660 mg/kWh NO_x

• NSC	7.5 [°] X	5, 600/3 Pt 50g/cft, V = 3.62L
• V-S	CR: 9.5"x2	7.5", $600/3$, V-SCR+ASC, V = 8.71L
	or	
• Cu-s	SCR: 9.5"x2	7.5", $600/3$, Cu-SCR+ASC, V = 8.71L

[1] Walter et al. H2 ICE technology development for medium-duty truck application: from concept to full calibrated engine prototype

SIA Powertrain 2024

October 23

19

Euro 7 NO_x limit: 200 mg/kWh, N₂O limit: 200 mg/kWh

WHTC hot NSC+SCR

Test results Cu-SCR & NSC/Cu-SCR

going the extra mile

TP emissions, mg/kWh, WHTC cold & hot SCR catalyst empty at start of test (ANR ~ 1)

Catalyst setup	NO _x cold hot	NO _x c:h = 20:80	N ₂ O cold hot
SCR only	143 28	51	18 18
NSC + SCR	90 22	36	11 11

WHTC cold NSC+SCR

20

Euro 7 NO_x limit: 200 mg/kWh, N₂O limit: 200 mg/kWh

Test results Cu-SCR & NSC/Cu-SCR

going the extra mile

TP emissions, mg/kWh, WHTC cold & hot SCR catalyst empty at start of test (ANR ~ 1)

Catalyst setup	NO _x cold hot	NO _x c:h = 20:80	N ₂ O cold hot
SCR only	143 28	51	18 18
NSC + SCR	90 22	36	11 11

ECT-2024, 15th international conference

WHTC 1D Simulation results Pre-filled SCR and optimized urea dosing

Emissions mg/kWh	WHTC hot Cu-SCR only	WHTC hot NSC+Cu-SCR	WHTC cold NSC+Cu-SCR	WHTC 20:80 NSC+Cu-SCR
NO _x	21	14	68	25
N ₂ O	24	17	16	16

- Good match on NO_x storage and buffering effect between measurement and simulation
- With pre-filled SCR and optimised urea dosing, even lower NO_x is possible

Conclusions & outlook H₂ ICE

- The SCR technology used to meet BS7/Euro 7 or Tier 5 emission standards for diesel engines can be used without further adaptions on the H₂ ICE, hence reducing development costs & effort
- > The Cu-SCR has been tested on an engine bench setup as SCR only and in combination with an NSC
- > The NSC shows a NO_x buffering effect over the entire test cycle, supporting hence the SCR and reducing N_2O emissions
- > The SCR volume can be 2-3x lower on a H_2 ICE comparing to a diesel engine
- > Near-zero NO_x emissions are possible on a H₂ engine with a relatively small ATS & optimized urea dosing
- Outlook: V-SCR as replacement of Cu-SCR will be tested on the dyno & simulated the combination of LNT/pSCR as well

Many thanks to the colleagues from IFPEN David Berthout, Loic Rouleau, Bruno Walter and Geoffrey Bourrachot for the H₂ ICE testing

> and to the audience for your attention!

