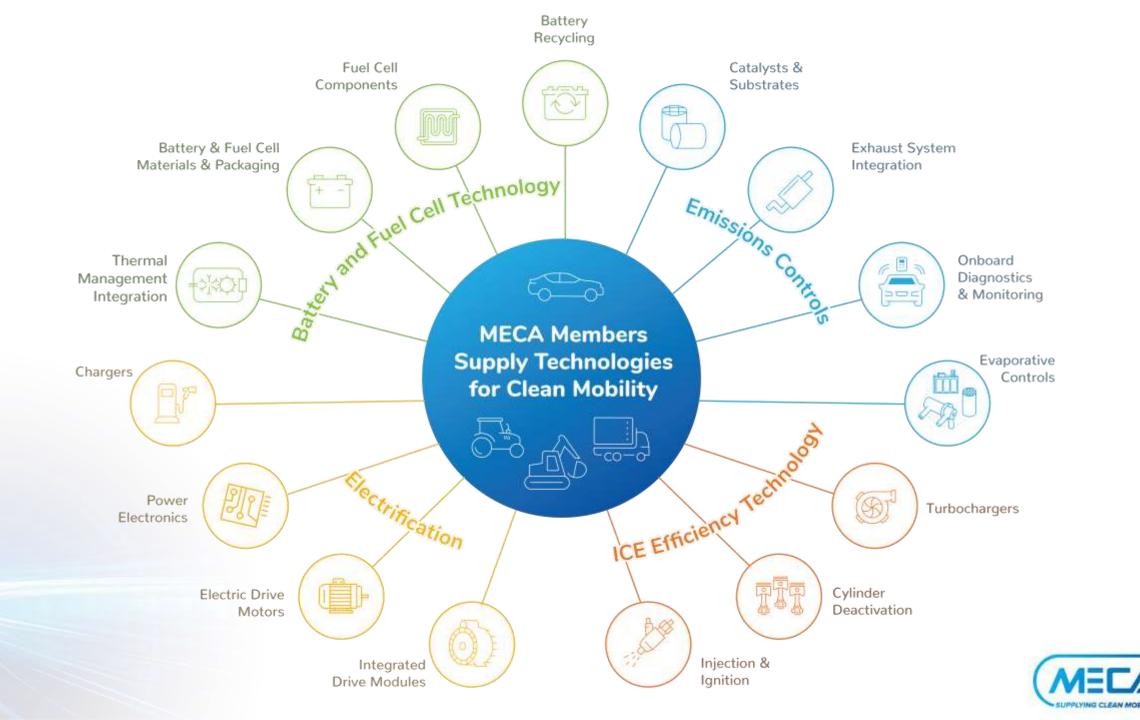
Opportunity for Hydrogen Engines in Heavy-Duty Trucking

Dr. Michael Geller Emission Control Technologies 2024

New Delhi, India


Outline

Hydrogen engine's role in meeting climate and air quality goals

Engine and aftertreatment technology

Role of Government Policies

Hydrogen Engine's Role in Meeting Climate and Air Quality Goals

US National Blueprint for Transportation Decarbonization

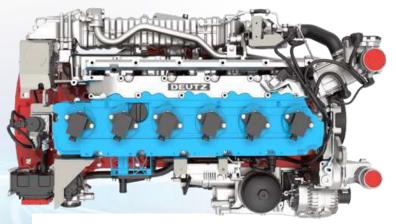
1 icon represents limited long-term opportunity 2 icons represents large long-term opportunity 3 icons represents greatest long-term opportunity	BATTERY/ELECTRIC	(C) HYDROGEN	SUSTAINABLE LIQUID FUELS
Light Duty Vehicles (49%)*		-	TBD
Medium, Short-Haul Heavy Trucks & Buses (~14%)		6	
Long-Haul Heavy Trucks (~7%)		000	<u>7</u>
Off-road (10%)		0	đ
Rail (2%)		00	
Maritime (3%)		() () ()	
Aviation (11%)		0	
Pipelines (4%)		TBD	TBD
Additional Opportunities	 Stationary battery use Grid support (managed EV charging) 	Heavy industries Grid support Feedstock for chemicals and fuels	 Decarbonize plastics/chemicals Bio-products
RD&D Priorities	 National battery strategy Charging infrastructure Grid integration Battery recycling 	Electrolyzer costs Fuel cell durability and cost Clean hydrogen infrastructure	Multiple cost-effective drop-in sustainable fuels Reduce ethanol carbon intensity Bioenergy scale-up
* All emissions shares are for 2019		† Includes hydrogen for ammor	nia and methanol

OEMs and Suppliers Supporting a Three-Pronged Strategy to Decarbonize HD Transportation

Multiple pathways may provide range of solutions to address infrastructure challenges

Broad Industry Support for H₂-ICE Engines

JCB Announces Hydrogen Fuel Combustion Engine Technology


Cummins Newsroom: Hydrogen Technologies

CUMMINS BEGINS TESTING OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE

Jul 13, 2021 Columbus, Ind.

MAHLE supports Liebherr in developing hydrogen-fueled heavy-duty engines

DEUTZ hydrogen engine ready for the market

Press Release: AVL and SuperTurbo™ Technologies Partner on Hydrogen Engine Application

Caterpillar to Expand Hydrogen-Powered Solutions to Customers

September 1, 2021 FOR IMMEDIATE RELEASE

FEV pushing hydrogen IC engine development

H2 – key player in the Maritime Energy Transition

Technology Commonality Accelerates Cost Parity with FCEVs

Diesel	Hydrogen	Natural Gas		
Base engine (block, crank, auxiliaries, etc)				
Installation parts (mounts, flywheel housings, REPTO, pipework, etc)				
	Cylinder head (DOHC, VVA, EGR)			
	Ignition system			
	Engine control unit, and software			
	Fuel system			
	Air handling system			
Aftertreatment system – NH3-SCR		TWC		

H2 Fuel Cell	H2 ICE			
H ₂ production				
H ₂ distribution				
H ₂ filling station availability				
On-board H ₂ storage				
Needs electrification of driveline & accessories	Uses existing drivelines & accessories			
No aftertreatment	Requires aftertreatment			

- H2-ICE can serve as alternate hydrogen technology by utilizing existing powertrain technologies to keep up front capital costs low. Facilitates training and transition of labor force to future technology.
- Offers near term advantages in total cost of ownership, existing maintenance practices
- Would create a market for green hydrogen to support build-out of infrastructure.

Creates Business Case for Hydrogen Fueling Technology Allows fleets to seamlessly transition to fuel cell technology

Gaseous H2 supply – Compressor

- Outlet pressuresInlet pressure
 - Capacity
 - Efficiency

28 or 56 kg/hour 1 – 3,3 kWh/kg

5 – 200 bar

500 or 900 bar

Compressor based hydrogen refueling stations


Liquid H2 supply – Cryogenic Pump

- Outlet pressures
 - Inlet pressure
 Capacity
- Efficiency

- 500 or 900 bar 2 – 2,5 bar
 - 40 or 100 kg/hour
- 1,3 1,5 kWh/kg

Cryogenic Pump based hydrogen refueling stations

Light vehicles

Buses

Trucks

Trains

Source: Linde plc

Hydrogen Engine and Aftertreatment Technology

10

Industry consortium demonstrating hydrogen pathway to decarbonizing on-road sector but applicable to nonroad

Industry consortium demonstrating hydrogen pathway to decarbonizing hard-to-electrify sectors

A SEIT TENNECL

DAIWLEH THUC

PHINIA UP

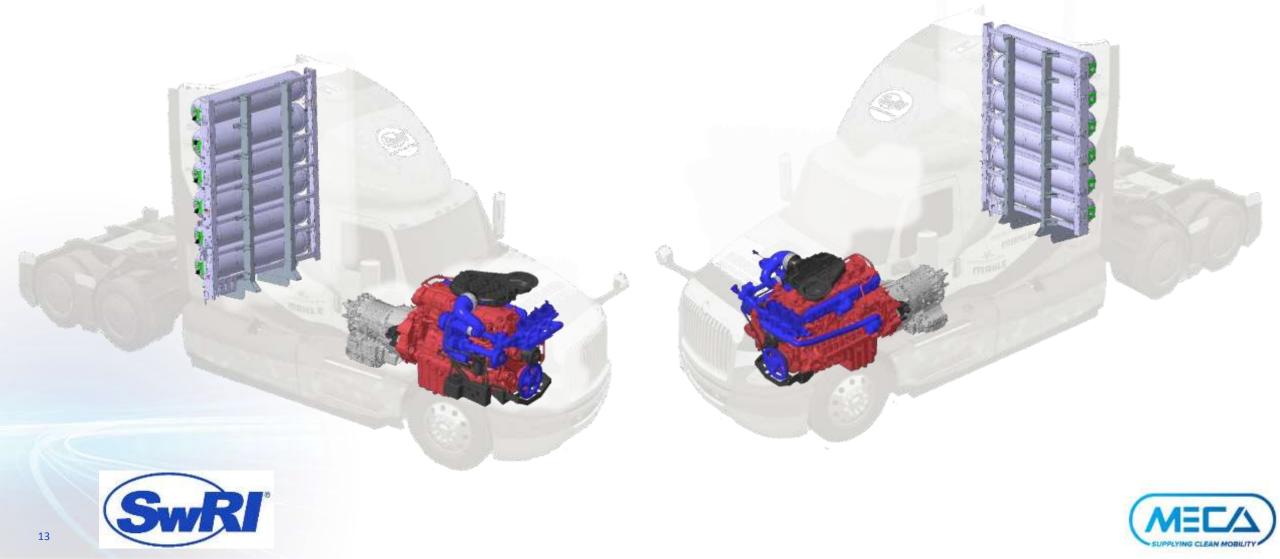
MECA)

SwR

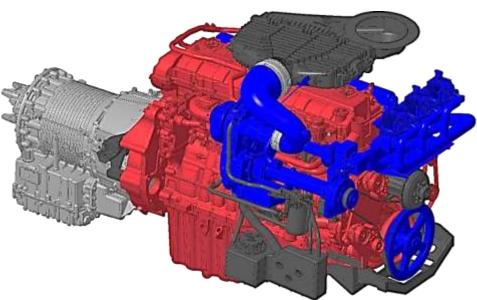
Program Targets

Efficiency:

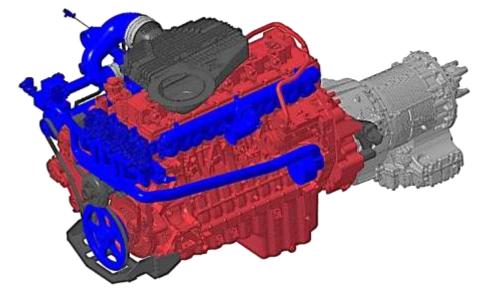
• 40-45% Peak BTE


Emissions:

- < 0.02 g/hp-hr)
- < 1.0 g CO₂/hp-hr (<u>99.9%</u> reduction from diesel trucks)

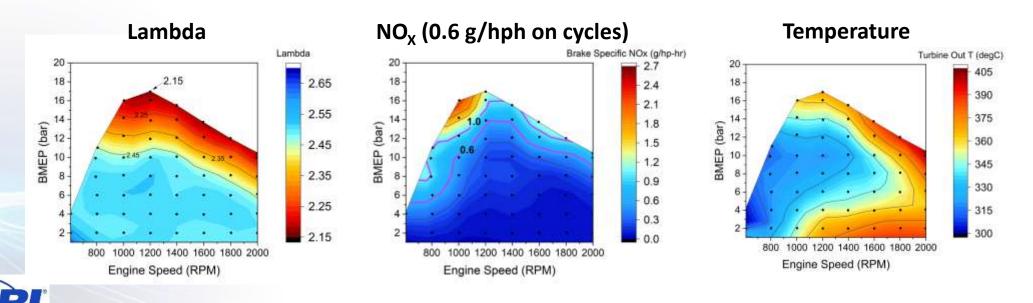


H2-ICE Demonstration Truck – Powertrain and FuelTanks

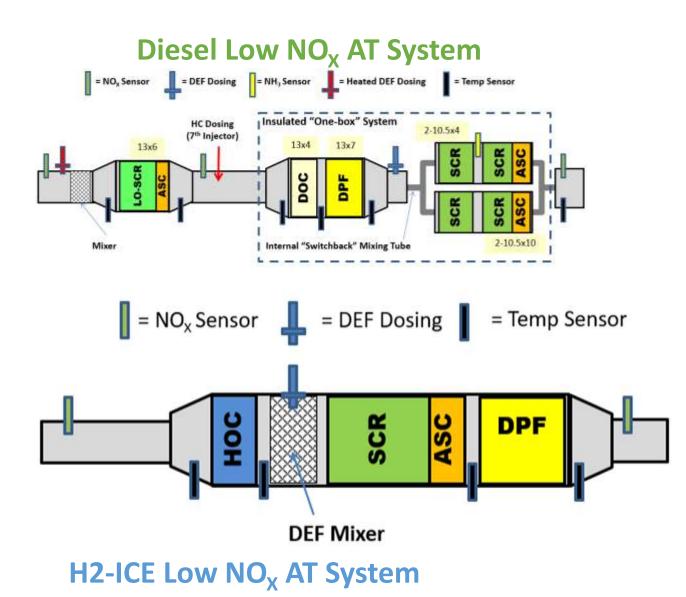


Engine Hardware Changes

- Removal of OEM Hardware from Cummins X15N
- Addition of Hydrogen Hardware (Blue)
 - SuperTurbo
 - Port Fuel Injection System
 - Ignition System
 - Crankcase Ventilation System



Red – Cummins XI5N Engine Gray – Allison 4000 HS Transmission Blue – H₂ ICE Specific components Black –Vehicle Specific Components

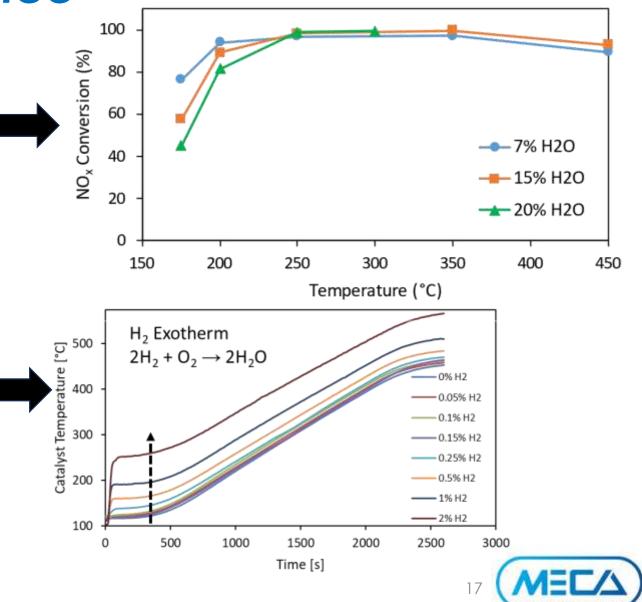

Calibration of the Engine and Exhaust Temperature Creates Optimal Conditions for near Zero NOx and CO₂

- Unique turbo design and engine integration allowed for air/fuel ratio tight lambda control around λ =2.1-2.5 over entire engine map
- Lambda of 2.1-2.5 maintained brake thermal efficiency (BTE%) around 40% with peak efficiency of 43%
- Turbine out temperature is maintained between $300^{\circ}C 350^{\circ}C$ which is ideal for NO_x conversion
- Higher exhaust temperature and short heat-up time avoids N₂O formation at temperatures below 300°C

$\lambda = 2.5$ $\lambda = 1.5$ $\lambda = 3$

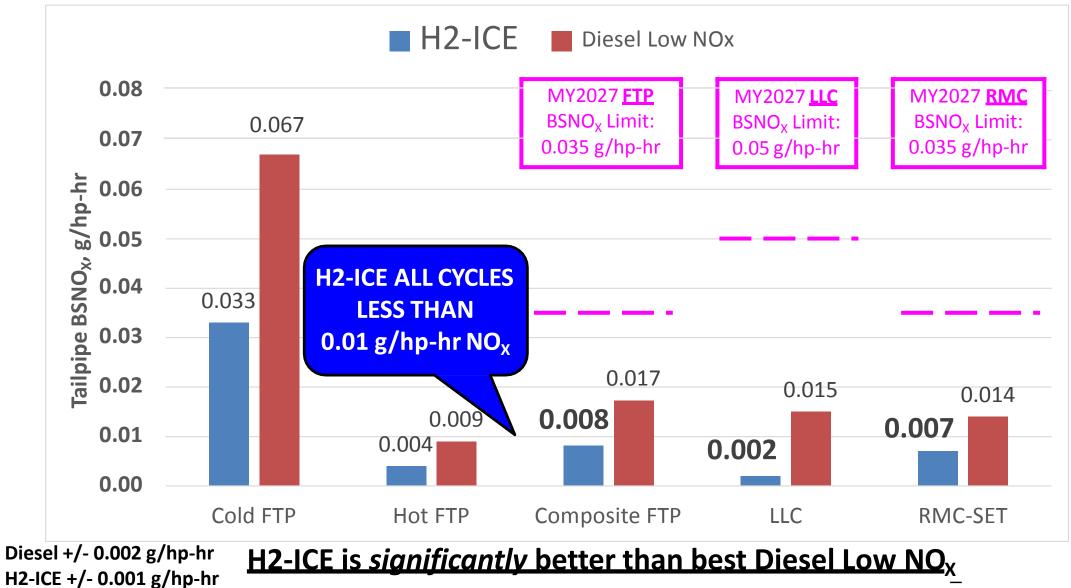
Suppliers are Addressing NOx with Streamlined Aftertreatment

- Lean combustion and NOx emission control with existing aftertreatment solutions provides best performance with lowest emissions.
- Particulate emissions like CNG mainly from lubricating oil can be addressed with conventional particulate filter.
- Catalyst and temperature control to manage $\rm N_2O$
- Catalyst solutions exist to tackle NOx
 - Close-coupled oxidation catalyst for thermal management and feed gas for SCR

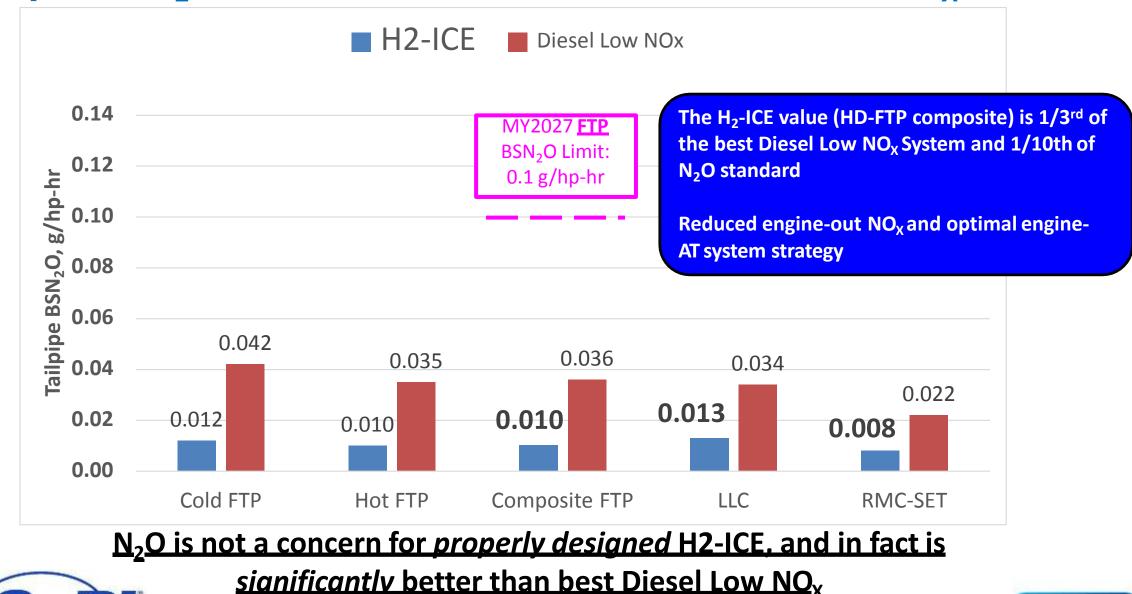


Aftertreatment Performance

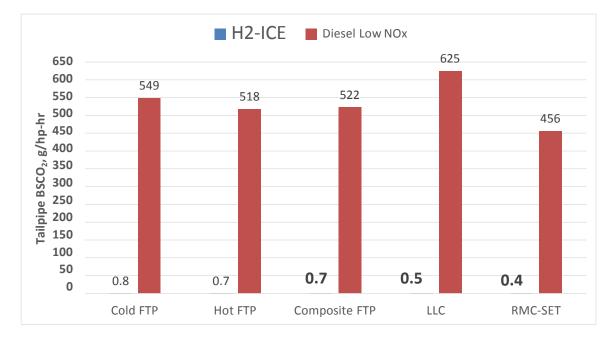
Bench evaluation of catalysts showed no negative impact from water concentrations in H_2 exhaust above 250 °C


• Conversion at 300 °C is over 99%

Oxidation catalyst showed strong exotherm from hydrogen slip, minimizes lowtemperature operating window for minimal N₂O formation


Tailpipe BSNO_X Results – Better Than Low NO_X

18


Tailpipe BSN₂O Results – Much Better than Low NO_X

Tailpipe Net CO₂ Emissions

99.9% CO₂ Reduction with H2-ICE

- Remaining CO_2 is mostly from DEF injection for NO_X control
- H2-ICE < I g/hp-hr CO₂ on all cycles
 - Diesel ~ 450-625 g/hp-hr CO₂

CO₂ Concentrations

Location	Average CO ₂ Concentration, ppm
Ambient Air	420
H2-ICE Exhaust Cold FTP	480
H2-ICE Exhaust Hot FTP	490
H2-ICE Exhaust LLC	430
H2-ICE Exhaust RMC	470

- H2-ICE exhaust CO₂ is only slightly above ambient, ~+60ppm from ambient
- For comparison Diesel cycle average is ~+5<u>%</u> from ambient (~800X higher than H2-ICE)

Summary of H2ICE Demonstration

Engine and vehicle successfully converted to operate on H2

- Including updated aftertreatment system and actual measured emissions data generated on all cycles
- Measured tailpipe NOx levels are <10 mg/hp-hr on all U.S. regulatory cycles
- Tailpipe CO2 levels show consistent 99.9% reduction from comparable diesel platform
- N2O levels are well below diesel and 10% of current standard
- HC, CO and PM are all zero
- Tailpipe emission levels are near zero or zero for all measured pollutants and CO2

The Role of Government Policies

22

Government Support Needed in Hydrogen Transition

- Regulations should be designed to not be a barrier to clean H2-ICE technology
 - EU HD CO₂ regulations propose to treat H2-ICE as zero carbon in VECTO
 - China's policy supports diverse technology paths and hydrogen infrastructure
 - EPA Phase 3 treat hydrogen as zero carbon in GEM
 - Regulations that require zero-emission technologies should consider H2-ICE as partial or full compliance, especially if BEVs or FCEVs are not viable
- Incentives needed to promote technology through DERA and state agency programs
- Infrastructure availability must begin to be utilized to justify investment
- The U.S. Department of Energy has several hydrogen initiatives:
 - H2@Scale,
 - Hydrogen Shot
 - Hydrogen Hubs
 - Research funding through national labs

Hydrogen Combustion Summary

• Zero carbon option for early reductions in the 10-15 year time horizon

- Existing manufacturing would allow scale production by 2027
- Zero-carbon with green hydrogen

Complementary with a hydrogen fuel cell future

- Drives buildout of hydrogen fueling infrastructure
- Reduces hydrogen cost by creating business case
- Builds scale for hydrogen storage tanks on vehicle

• Fits with carbon neutral transportation goals

• Fills need where BEV or FCEV challenges exist

Benefits to fleets

- Competitive initial capital cost
- Drop-in powertrain replacement for regional haul / long haul
- Familiar technology, and existing maintenance, workforce and practices
- Seamless fuel transition with FCEV cost parity

• **Regulations should not be a barrier to clean H2-ICE technology**

- EU HD CO_2 regulations treat H2-ICE as zero carbon in VECTO when CO_2 is less than 3 g/tonne-km
- EPA Phase 3 treat hydrogen ICE as zero carbon emitting vehicle in GEM
- EPA Phase 3 engine CO₂ emissions default value for H2-ICE is 3 g/bhp-hr

