

Using Digital Engineering to Meet the Future Emission Challenges of Agricultural NRMM

Steve Whelan steve.whelan@horiba-mira.com

October 23rd 2024

Real World Emissions Compliance & RDE

ISC and RDE will impact the development and certification of NRMM & HDV powertrain

EU Stage VI ISC

- In-Service Monitoring introduced in 2016
 - Commission Delegated Regulation (EU) 2017/655 of 19 ____ December 2016 (56 to 560kW engines)
 - CO, CO_2, NO_x, THC
 - Defined measurement "window" criteria

EU Stage VI

- Objective to introduce In-Service Compliance (ISC)
- Stage VI in 2032

Indian ISM/ISC

India Stage V ISM planned for October 2026

- Trip composition **RDE-like** criteria
- Any driver aggre
- **RDE** Conformity
- Whole life facto
- 875,000k/10 ye

© 2023 HORIBA, Ltd. All rights reserved

Heavy Duty Euro 7 – RDE & ISC

n governed by Euro6e	• New measurements: + PN10, NMHC	
a	 Reduction in limit values 	
essivity	 From cold (2km @ <20% power) 	
y Factors of 1.0	Brake & Tyre PM/PN	
r of 1.2	Battery durability	
ars ISC	 On-Board Monitoring 	
	-	

- Any trip with >6% rated power condition.
- Any application within legal limits
- Makes engineering and V&V process much harder.
- "Infinite" scenarios

Real-World ISM/ISC Adds Complexity & Cost to Development Use Digital Engineering to cover the scenario landscape

- "Infinite" use-case scenarios in NRMM ISC
- Impossible to physically test and validate all cases

- Achieve sufficient coverage using predictive simulation
- Use simulation to identify worse cases
- Physically test worst cases only (far fewer tests)
- Use simulation to populate the validation
 - Physical 'Worst case' Road test Lab Replication & Emulation
 - Simulation Empirical Digital Twin
 + Co-simulation

Empirical Digital Twin What is it?

Physical Object

- A pseudo-perfect digital representation of a physical object.
- Empirically based and created with 'real' data.
- Empirical models of different attributes i.e., fuel economy, NOx, battery attributes, power consumption reside within the EDT
- Our EDTs use dynamically "trained" neural networks – they are <u>NOT</u> "physics" models
- These models are subsequently used to predict responses for specific inputs.

Intelligent Lab EDT Toolset Modeller **Test Designer** Predictor Transient excitation signal Rapid generation of transient Prediction of attributes using

design specific to the unit under test

empirical models using recurrent neural networks

Multi-objective optimiser and 'hot-spot' identification toolset for improved performance

Digital Twining Methodology (1)

1. Experiment design

Create the transient training cycle using HORIBA Intelligent Lab toolset

Record training data from the unit under test (engine, powertrain, motor, battery)

3. Model creation

Create transient empirical models of various performance and emissions attributes

4. Model validation

Validate transient empirical models to ensure high quality and fidelity

Environmental Emulation using HORIBA MEDAS

- The HORIBA MEDAS has a key role in helping create the powertrain empirical digital twin and is used for environmental emulation.
- Altitude and temperature can be added as inputs to the dynamic design with the subsequent empirical models therefore incorporating the effects of altitude and temperature on powertrain performance and emissions.
- Shown here is a schematic of how the powertrain is configured with MEDAS. This system can also be used as part of a chassis dyno setup.

EDT Model Validation

Model Quality Examples – Performance Attributes – Off Highway Engine

© 2023 HORIBA, Ltd. All rights reserved

Real World Validation Cycle

Digital Twining Methodology (2)

5. Virtual or real scenarios

Create synthetic real-world machine operating scenarios using 3rd party software or utilise physical real-world data and couple with transient empirical models

6. Predict responses

Predict attributes for the scenarios created using the light-weight transient empirical models created

Prediction of Performance and Emissions: Simulated Virtual Machine Duty Scenarios

- Demo tractor from AgriSI standard library
- Parameterised from experimental data
- Total weight: 6,200kg
- Front axle: twisting
- Rear axle: rigid

Automotive

- Tyre models for plastic soil (from ASAE specification and experimental data)
- Torque curve from mule engine tested at HORIBA MIRA; 55kW peak power

Prediction Examples from Simulation – Ploughing 150mm Depth

© 2023 HORIBA, Ltd. All rights reserved

21

22

Conclusions

- Future direction of global NRMM regulation will bring in real-world emissions and inservice compliance
- Real-World emissions scenarios add significant complexity to the development and certification process
- New methods must be used to mitigate the impact of such complexity
- HORIBA and partners have demonstrated the use of empirical digital twins in NRMM simulation
- Digital Engineering solutions will be required to meet the demands of real-world ISC compliance for NRMM

exity to the development and

Thank y

감사합니다

Dziękuję

धन्य

Merci

ขอบคุณคร

Gracias

Σας ευχαριστ

Teşekkürler

Danke

© 2023 HORIBA, Ltd. All rights reserved

OU Cảm ơn		
ありがとうございました	• • • • •	
यवाद Grazie		
谢谢 รับ நன்றி		
Obrigado		
ούμε Děkuji		
شک Tack ska ni ha		

Большое спасибо