CHALLENGES AND SOLUTION FOR UPCOMING EMISSION NORMS IN HEAVY DUTY

ECT 2024, New Delhi, India

Public

JEMITEC TECHNOLGIES

● CHALLENGES IN HD FOR FUTURE LEGISLATION

●LEARNING FROM PASSENGER CAR AND NON ROAD

DEVELOPMENT FOR HEADY DUTY AFTER-TREATMENT

• READY ADAPTIVE SOLUTION

EMITEC TECHNOLOGIES GLOBAL FOOTPRINT

High capacity facilities for serial production and new product launches with potential for capacity expansion

EMITEC TECHNOLOGIES

A WIDE RANGE OF INNOVATIVE PRODUCTS FOR MOBILE & STATIONARY APPLICATIONS

400 000 000 + produced METALIT® & EMICAT®

TEST CENTER VIEW CENTRAL FLOOR

DEVELOPMENT SUPPORT BY EMITEC TECHNOLOGIES

Development Service (CAD / CAE / Concept Development)

Rapid-Prototyping (as plastic part for pre examinations e. g. flow distribution)

Functional samples from metal e.g. casted, metal printed, Complete exhaust systems für test on engine test bench or vehicle testing)

Detailed reporting of test and analysis results

● EMITEC TECHNOLGIES

OCHALLENGES IN HD FOR FUTURE LEGISLATION

● LEARNING FROM PASSENGER CAR AND NON ROAD

DEVELOPMENT FOR HEADY DUTY AFTER-TREATMENT

PREADY ADAPTIVE SOLUTION

EUROPEAN EMISSION LEGISLATION AND TEST CONDITIONS

COMPARISON OF OLD AND NEW LEGISLATION FOR HEAVY DUTY VEHICLES

	Trucks	
	EURO VI	Trilogue agreement Euro VII
Limits	Weighted average MAW Cold (x0,14) / MAW Hot (x0,86)	Maintaining Euro 6 Test conditions Weighted average MAW Cold (x0,14) / MAW Hot (x0,86)
NOx	460 mg/kWh	200 mg/kWh
PM	10 mg/kWh	8 mg/kWh
PN	PN ₂₃ 6x10 ¹¹ #/km	PN₁₀ 6x10 ¹¹ #/km
СО	4.000 mg/kWh	1.500 mg/kWh
THC		
NMHC		
NMOG	160 mg/kWh	80 mg/kWh
NH ₃	10 ppm	60 mg/kWh
CH ₄	500 mg/kWh	500 mg/kWh
N ₂ O	-	200 mg/kWh
Power Treshhold	10% of max power	6% of max power
RDE Conformity Factor	CF gaseous = 1,5	CF gaseous = 1,3
		CF NH ₃ = 1,4
	CF PN =1,63	CF PN =1,5

EU VII ~ 0.5 * EUVI

US HD ON HIGHWAY / CV REGULATORY DEVELOPMENT

EPA / CARB 2027 REQUIREMENTS

LLC composite limits

CHALLENGES HEAVY DUTY

CO₂ Target

Cold Start

Low Load Cycle; City Driving

In addition:

Meeting stringent CF in Real Drive (RDE) / In-Use / Off-Cycle Emissions

● EMITEC TECHNOLGIES

●CHALLENGES IN HD FOR FUTURE LEGISLATION

JLEARNING FROM PASSENGER CAR AND NON ROAD

DEVELOPMENT FOR HEADY DUTY AFTER-TREATMENT

● READY ADAPTIVE SOLUTION

EMITEC PROVEN CONCEPT CLOSE COUPLED DOC / SDPF SYSTEMS

EMITEC PROVEN CONCEPT

SCR-SYSTEM WITH RING METALIT® CATALYST AND ADBLUE® INJECTION

Scalable Canning with optimized Thermal Management

● EMITEC TECHNOLGIES

●CHALLENGES IN HD FOR FUTURE LEGISLATION

● LEARNING FROM PASSENGER CAR AND NON ROAD

DEVELOPMENT FOR HEADY DUTY AFTER-TREATMENT

PREADY ADAPTIVE SOLUTION

CHALLENGE HIGHER EFFICIENCY, LOWER COST

CS-DESIGN FOR DOC AND SCR

●CS-design

Removal of the flat foils
Alternating stacking of the diagonally corrugated layers

Contact Points between corrugated layers

5° inclination

LOWER NH₃ SLIP WITH NEW CS-DESIGN

NOx-CONVERSION RATE @ 400°C (M = 1500 KG/H) VERSUS NH_3 SLIP

CHALLENGE COLD START AND LOW LOAD CYCLE

EMICAT® "EHC" AND HEATING DISC "EHD"

Electrically Heated Catalyst EHC

- Proven design
- more than 160.000 pcs in the field since 2014

Electrically Heated Disk EHD

- Based on proven EHC design and production machines and process for PC, Trucks and NRMM

EHC TESTING DATA IMPROVEMENT OF SYSTEM PERFORMANCE

EMITEC

● EMITEC TECHNOLGIES

● CHALLENGES IN HD FOR FUTURE LEGISLATION

●LEARNING FROM PASSENGER CAR AND NON ROAD

DEVELOPMENT FOR HEADY DUTY AFTER-TREATMENT

•READY ADAPTIVE SOLUTION

ASSESSMENT OF DOC FLOW DISTRIBUTION AS FUNCTION OF <u>DPF BACK PRESSURE</u>

Emitec

ACTUAL EXAMPLE IMPROVEMENT IN SPACE

200mm reduction in space due to compact system

200mm

EMITEC ELECTRICALLY HEATED DISK (EHD)

INTEGRATION IN FRONT OF PREBOX

Ocst Effective solutions to meet Future Emission legislation,

CHigher mass transfer with CS design provides additional benefits of Nox reduction

©Better thermal efficiency with Belt mantle design provides ideal solution for low load operation

©Easy adaptability of EHC / EHD in the existing system design for improved cold start performance

Compact exhaust system solutions with Emitec METALIT

WE SHAPE FUTURE!

